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Outline of presentation

• Introduction to Angle of Arrival (AoA) problem

• Cramer-Rao bounds for a class of non-linear estimators: Sub-

space projection methods

• Oversampling based AoA estimation

• Introduction to Iterative Bayesian Methods

• Numerical results

• Conclusions
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Introduction to Angle of Arrival

(AoA) estimation problem

The problem: Estimate the Angle of Arrival (AOA) for multiple

plane waves with arbitrary frequency using a linear array.
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Angle of Arrival (AoA) problem:

Continued

y(t) = A(θ)x(t) + e(t) ∀ t = 1, · · · , T. (1)

t indicates time (a snapshot), and y is a column vector of M

elements corresponding to M array sensors, while x(t) is a column

vector with N elements (the number of sources). A is the direction

matrix with dimentions (M, N) and e is an additive noise. θ denotes

N angles θi ∀ i ∈ {1, · · · , N} corresponding to the N sources and

are to be estimated as the AoA parameters of interest.
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Angle of Arrival (AoA) problem:

Continued

In MUSIC a number of assumptions on the noise e and signal x(t)

statistis are made.

The covariance matrix of the received signal is denoted by R and

is given by

R = E{y(t)y(t)†} = A(θ)E{x(t)x(t)†}A(θ)† + σ2I. (2)

Here † implies the conjugate transpose and E{} the expectation

operator, while σ is the standard deviation of the assumed additive

white Gaussian noise. I denotes an identity matrix.
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Cramer-Rao bounds for a class of

non-linear estimators

How do we measure the performance of an estimator?
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Cramer-Rao bounds for a class of

non-linear estimators: Continued

Theorem: (Cramer-Rao-Fisher) Given the SNR and the size of

the observation set the variance (or standard deviation) of the

estimate of θ yielded by any unbiased estimator is at least as high

as the inverse of the Fisher information I(θ).

var(θ̂) >
1

I(θ)

Let θ distributed according to probability density function f(x; θ),

x denote the measurements. Then

I(θ) = E





(

∂logf(x, θ)

∂θ

)2



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Cramer-Rao bounds for a class of

non-linear estimators: Continued

A large class of estimation problems can be cast as

y = A(θ)x(t) + e(t) ∀ t = 1, · · · , T

y is a column vector of m elements, x(t) is a column vector with

n elements, A(θ) is a (m, n) matrix and e is a column vector of

additive noise components with known distribution.

• Estimating the carrier frequency of a pulse can be written in

this form

• Estimating the angle of arrival (AOA) of plane waves on an

array can be written in this form
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Cramer-Rao bounds for a class of

non-linear estimators: Continued

The CRB for this class of estimation problems can be shown to

be given by (see Petre Stoica 1989)

CRB(θ) =
σ2

2







N
∑

t=1

Re{X†(t)D†[I − A(A†A)−1A†)]DX(t)}







2

X(t) =











x1(t) 0 · · · 0
0 x2(t) · · · 0
... ... ... ...
0 0 0 xn(t)











D = [
∂a1(ω1)

∂ω1
, · · · ,

∂an(ωn)

∂ωn
]

where ai is the i’th column of A and θ has elements ω.
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Difficulties for the MUSIC method

• The CRB is infinite if sources > than sensors (superior case)

• The AoA estimate is ambiguous if array is sparse

• the CRB is large if angles are close to each other
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AoA estimation using oversampling

and Bayesian methods

Signal bandwidth = B Hz

Sampling frequency = f Hz

B ≪ f

1/fc

1/B
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Piecewise constant formulation

For δt the amplitude over t ∈ {t0 · · · , t0 + δt} will be constant.

There are say Q samples at a sample period of T seconds.

y1(t) = α1
1 exp(jω1t) + · · · + αN

1 exp(jωNt) + e1(t)

y2(t) = α1
2 exp(jω1t) + · · · + αN

2 exp(jωNt) + e2(t)
...

yM(t) = α1
M exp(jω1t) + · · · + αN

M exp(jωNt) + eM(t) (3)

y is the observed data (a column vector with Q samples), t ∈

{t0 · · · , t0 + δt} is time (snapshots), e noise and j =
√

(−1).
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Piecewise constant formulation:

continued

Given the source frequencies were estimated, the complex ampli-

tudes for sersor i is

[α1
i , · · · , αN

i ]T = (E†E)−1E†[yi(t0), · · · , yi(t0 + δt)]T (4)

where † indicates the Hermitian transpose and T the transpose,

E = [e1, · · · , eN ] (5)

and

ek = [1, exp(j2πfk), · · · , exp(
j2πfk

Q − 1
)]T . (6)
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Time varying formulation

It is possible to estimate α as a function of time.

At each time sample, after α were estimated then the angle can

be estimated.

It appears iterative Bayesian Methods are well suited for this

approach.
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Introduction to Iterative Bayesian

Methods

• xk is a state vector at time k containing variables that are not

directly observable in the digital receiver.

• The Process model is denoted by fk, and any process uncer-

tainty by process noise vk. Assume Markov model order 1.

xk = fk−1(xk−1,vk−1)

• f is assumed to be a known but possibly nonlinear function

(weak assumption)

• Objective The receiver is to estimate xk based on a series of

measurements up to time k that are noisy, and denoted by

zk=1,2,3,··· ,k
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Introduction to Iterative Bayesian

Methods: Continued

• Relationship between x and z is given by zk = hk(xk,wk)

• h is known and nonlinear, w is additive (measurement) noise

• In Bayesian inference, we wish to compute some degree of

belief in the state xk given data Zk up to time k.

• Denote by Z the entire observed vector sequence up to time k

as Zk = {zi,∀i = 1, · · · , k}

• Assume p(xk|Zk−1,xk−1) = p(xk|xk−1) i.e. we are dealing with

a Markov process of order one

• At time k p(xk−1|Zk−1) is known {p(x0|z0) is prior at k = 1

where z0 is the set of zero measurements}
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Introduction to Iterative Bayesian

Methods: Continued

• Applying Bayes’ rule we have the update relation:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)

• Normalizing constant given is by

p(zk|Zk−1) =
∫

p(zk|xk)p(xk|Zk−1)dxk

• Chapman-Kolmogorov equation predicts p(xk|Zk−1) as

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1.

• p(zk|xk) is defined by the measurement model and known

statistics of w
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Introduction to Iterative Bayesian

Methods: Continued

Knowledge of the posterior density provides a solution to form an

estimate with respect to any reasonable criterion.

• As an example, the Minimum Mean Square Error (MMSE)

estimate is given by

E{xk|Zk} =

∫

xk · p(xk|Zk)dxk

• Maximum Aposteori Probability (MAP) estimate is given by

argmax
xk

p(xk|Zk)
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Low complexity approximation to

Universal Bayesian Methods

• The Universal Bayesian solution has not been solved analyti-

cally to date (except for some trivial cases).

• Generally, we need approximations to obtain results in practical

systems.

• The Extended Kalman Estimator (EKE) is a widely applicable

approximation to the Universal formulation.

• For the EKE formulation we assume the first term in the Taylor

series expansion of f and h are sufficient. This linearizes the

non-linear Universal Bayesian solution.

• The posterior distribution p(xk|Zk) is approximated as Gaus-

sian.

18Angle of arrival estimation using sparse linear arrays for the superior case
Prof. J.C. Olivier
Defense, Peace, Safety and Security, CSIR, Pretoria
Department of Electronics Engineering, University of Pretoria, Pretoria



Numerical results: AoA estimation

• 200 samples of sinusoidal pulses

• Frequencies at 900 MHz, 920 MHz and 940 MHz

• All pulses have same amplitude

• No knowledge of number of pulses required as is the case with

MUSIC
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Numerical results: AoA estimation
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Numerical results: AoA estimation
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Conclusions

• AoA estimation can be performed effectively using oversam-

pling.

• Limitations of MUSIC may be overcome to large extent.

• Synthesis of sparse array optimal for this formulation is open

problem.

• There is no need to know the number of pulses, their ampli-

tudes or phases, nor their frequencies.
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